High standards for labs, research buildings: HVAC systems

Laboratory and research facilities are high-performance buildings, often with complex systems and exacting standards for engineers to meet. HVAC systems and indoor air quality are key issues.


Bryan Laginess, PE, LEED AP, Senior associate, Peter Basso Associates, Troy, Mich. Jeremy Lebowitz, PE, Vertical market leader, Rolf Jensen & Associates Inc., Framingham, Mass.Brian Rener, PE, LEED AP, Associate, SmithGroupJJR, ChicagoJoshua Yacknowitz, PE, LEED AP, Associate principal, Arup, New York City

  • Bryan Laginess, PE, LEED AP, Senior associate, Peter Basso Associates, Troy, Mich.
  • Jeremy Lebowitz, PE, Vertical market leader, Rolf Jensen & Associates Inc., Framingham, Mass.
  • Brian Rener, PE, LEED AP, Associate, SmithGroupJJR, Chicago
  • Joshua Yacknowitz, PE, LEED AP, Associate principal, Arup, New York City

Colleges and universities frequently are home to laboratory and research facilities. Renovations such as the Michigan Memorial Phoenix Laboratory at the University of Michigan can help such institutions keep up with the latest advancements. Courtesy: Peter Basso Associates Inc., Camille Sylvain Thompson photographerCSE: What unique HVAC requirements do laboratory/research facility structures have that you wouldn’t encounter on other structures?

Laginess: Laboratories usually require a high air change rate, and usually require 100% outside air. From an energy standpoint, it is a very costly operation. Although not always required, energy recovery systems are commonly used to reduce the operating cost.

Yacknowitz: Once-through air requirements in many lab types; control zone fire separation and need to segregate exhaust risers in shafts; specialized exhaust systems such as radioisotope and perchloric acid, which require dedicated exhaust systems and special controls; fast-acting terminal air valves for control of airflows in labs; and minimum air change rates in lab spaces, to name a few.

CSE: What changes in fans, variable frequency drives, and other related equipment have you experienced?

Yacknowitz: Variable frequency drives (VFDs) are quite common nowadays because the cost of these controllers is quite low compared to years ago. In labs, however, depending on the science, there may be a need to provide 12- or 18-pulse VFDs in order to control harmonic distortion in the building power grid. These VFDs are more expensive and often require significantly more space to install. We have also seen more dc motors for small systems such as clean room fan filter units, as these motors are infinitely adjustable in terms of speed and run at high efficiency.

CSE: In your experience, have alternative HVAC systems become more relevant?

Laginess: We are seeing an increased use of chilled beams in laboratory projects. The design approach is very different from the standard air systems. This system can reduce energy costs and require less space for installation. I think that as we see energy costs continue to rise, alternative methods will become standard.

Yacknowitz: Chilled beams are becoming more acceptable, particularly in nonchemistry labs where recirculation of air within the lab is not as much of a health or safety risk.

CSE: Do you find it more challenging to retrofit HVAC systems on older buildings than installing on new?

Laginess: It is more challenging to retrofit HVAC systems on older buildings than to install them on a new building. The design team has much more control over the systems used and how they fit into the facility when they can start with a clean slate.

Yacknowitz: Generally, it is easier in new buildings since the current code requirements for control zoning, shaft segregation, and other factors can be planned into the structural and floor plan arrangement of the building. Older buildings are often built to older codes, which makes it difficult to meet current control zone, shaft space, and floor-to-floor height requirements that result from current codes and standards. However, there is generally a huge opportunity to dramatically increase energy efficiency in older labs.

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Controller programming; Safety networks; Enclosure design; Power quality; Safety integrity levels; Increasing process efficiency
Additive manufacturing benefits; HMI and sensor tips; System integrator advice; Innovations from the industry
Robotic safety, collaboration, standards; DCS migration tips; IT/OT convergence; 2017 Control Engineering Salary and Career Survey
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This article collection contains several articles on how automation and controls are helping human-machine interface (HMI) hardware and software advance.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me