Life after flash memory

Non-volatile flash memory has played a large role in enabling the performance we see in today’s microprocessors and computers. To store data, flash memory relies on controlling electrons stored in a transistor’s gate circuit. Flash provides attractive read-write speeds with reasonable power consumption.

04/01/2008


Non-volatile flash memory has played a large role in enabling the performance we see in today’s microprocessors and computers. To store data, flash memory relies on controlling electrons stored in a transistor’s gate circuit. Flash provides attractive read-write speeds with reasonable power consumption.

So far, flash memory has kept pace with continual shrinkage of chip fabrication processes characterized by Moore’s Law that predicts doubling of chip performance roughly every 18 months. While Moore’s Law appears intact for the foreseeable future, experts see flash and random-access memory (RAM) technologies reaching scale limitations in a similar timeframe. Forward-thinking companies and developers are anticipating this eventuality.

A new non-volatile technology—phase-change memory (PCM), also known as PRAM (phase-change RAM)—is viewed as the most promising among alternatives to flash. PCM stores data by altering the chip material’s atomic structure, obtaining improved data density and other benefits over standard flash.

Key milestone

Under R&D scrutiny for years, PCM has taken a major step forward. In early February 2008, Intel Corp. and Geneva, Switzerland-based STMicroelectronics announced the start of prototype silicon shipments using PCM technology to customers for evaluation. Codenamed “Alverstone,” these PCM prototypes are 128 Mb devices, fabricated on a 90-nanometer (nm) process. Intel refers to this product sampling milestone as “bringing [PCM] technology one step closer to adoption.”

PCM uses an electric pulse to alter the device material’s physical state at the microscopic level. Until recently, PCM designs implemented only two phase states — amorphous , with atoms loosely arranged and the chip material at high electric resistance, and crystalline , with atoms rigidly arranged and at lower material resistance. The resistance differential and ability to switch quickly between phases translates to data bit values 0 and 1.

Recent R&D work has found two more PCM material states able to store information: semi-amorphous and semi-crystalline . This essentially doubles memory capacity.

Other benefits claimed for PCM include dramatically faster read-write speed than standard flash memory and 50% power savings. A further advantage is PCM’s ability to change data at a single-bit level, much like DRAM. To change one data bit with flash can mean erasing a data block with thousands of bits, slowing data write cycles and increasing device wear.

Accelerated developments

Phase-change memory developments are accelerating. Only a few years ago, Intel and STMicroelectronics demonstrated 8 Mb memory arrays at 180 nm process node—as part of a joint development program for PCM technology begun in 2003. Further compelling research announced in February 2008 cited the two companies as developers of a new high-density, multi-level cell (MLC), large memory device using PCM technology. This advance from single-bit per cell to higher density MLC capability has significant impact for lowering cost of memory. Others, such as Hitachi, IBM, and Samsung, also are active in PCM development.

To implement Alverstone and other new memory products, STMicroelectronics, Intel, and investment firm Francisco Partners, have agreed to establish an independent semiconductor company named Numonyx. As of this writing, the transaction is slated to close in 1Q08.

Samples now available

Intel and STMicroelectronics haven’t set an introduction date for PCM products. Flash memory developments and improvements continue — by Intel, for one — and both technologies are bound to coexist for a long time. However, the Alverstone device now offered for sampling represents a learning opportunity for customers about an emerging technology. It provides designers time to evaluate and plan for PCM in future systems.

It’s not a question of if, but how soon, phase-change memory will enhance a gamut of new consumer and automation products, especially embedded systems.



Author Information

Frank J. Bartos, P.E., is a Control Engineering consulting editor. Reach him at braunbart@sbcglobal.net .




No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.