Meeting electrical infrastructure demands in data centers


Wiring types, methods

Base electrical infrastructure design and equipment selection are supported by appropriate specification of data center wiring. From the type of wiring chosen to its installation methods, voltages, and support, wiring is literally the veins of the data center’s body.

Copper is the preferred conductor material for its ease of use, historical low risk, and ability to work in tight places. That being said, aluminum conductors can be used for large feeders when first-cost reduction is necessary, even though aluminum wires are more challenging to terminate into circuit breakers or a bus, as aluminum expands and contracts more than copper when the load is changed. The larger aluminum conductors often require more space within switchgear, switchboards, and panelboards. Aluminum connections also require more testing and maintenance. A best practice with aluminum conductors is to annually thermoscan the joints and terminations during peak loading conditions. Tightening substandard joints and connections is then usually performed at a time where risk of a critical load outage is minimized.

Cable trays, typically used overhead, resemble a ladder hanging from the ceiling and are used in a data center’s electrical design for their reliable, flexible, and low-cost installation. Unlike bus ducts, the cable tray can be easily modified in the fielA variety of wiring methods are used in data centers. Data centers are primarily filled with overhead and underground conductors in conduits and ducts, while bus ducts, cable trays, and cable buses are also employed.

Electrical contractors prefer underground conductors because they perceive that installed costs will be reduced by automatically saving 5 ft of run on both ends and eliminating hanging expense. They assume that the same number and size of conductors are installed underground as overhead. Proper design using the Neher-McGrath calculations often requires larger numbers and sizes of conductors to be installed underground than overhead, reducing or eliminating this perceived advantage. Underground conductors must be sized larger to counter the added insulation naturally provided by the ground. With overhead conductors, however, it’s easier to get rid of the naturally generated heat.

Additionally, scalable, modular data center construction can make proper installation of underground ducts for future equipment challenging, as there’s no 100% accurate way to know where the ducts should surface for future build-out.

Care must be taken to size conductors appropriately for elevated ambient temperatures in computer equipment racks, data hall hot aisles, and electrical equipment rooms. NEC Table 310.15(B)(16) assumes that the ambient temperature is 86 F. However, where the ambient temperature is higher than 86 F, the conductor won’t continuously carry the load current for which it’s rated at 86 F, and must be derated for the actual ambient temperature.

While sometimes used in the data center’s electrical infrastructure, bus ducts face both reliability and maintainability issues because of the multiple joints found in bus ducts. Bus duct joints are typically found every 10 ft in straight runs, so for every 100 ft of straight run, there can be as many as 11 joints (remember that fittings, elbows, etc., add additional joints). This can make bus ducts more susceptible to failure and maintenance more difficult. Additionally, bus ducts are factory-assembled products made to fit field measurements. If any of the measurements are wrong or a bus duct piece doesn’t fit, it cannot be field-modified. A new piece must be ordered from the factory, often with a considerable wait attached.

Cable trays, typically used overhead, resemble a ladder hanging from the ceiling and are used in a data center’s electrical design for their reliable, flexible, low-cost installation. Single conductor and multi-conductor cables can be installed in cable tray, and armored cables are often specified to provide increased fault tolerance. Cable tray can be easily modified in the field to fit conditions, so precise measurement is not as critical as it is for bus duct. It is important to realize that every cable in a cable tray can be lost if just one faults and burns, unless all of the cables are armored. Another crucial point is that stacking cable trays one above another can lead to cascading failures. If a cable faults in the bottom tray, it could cause a fire that burns every cable in that tray as well as in the ones above.

Cable bus is an alternative to bus duct that has many advantages. Assembled like a cable tray with large single conductor power cables run within it, including spacer blocks between the cables, it can be easily modified in the field to fit field conditions. Contrary to bus ducts, cable buses typically only have two terminations (one at each end, with solid cable in between) and no joints, making them more reliable. The reduced number of terminations and joints also reduces maintenance.

Voltage and installation

Copper is the preferred conductor material for data center cables for its ease of use, historical low risk, and ability to work in tight places. At the top, low-voltage cable is used in data centers with a range of 0 to 2000 V. At the bottom, medium-voltaBoth low and medium voltages are used in today’s data centers. Proper voltage selection is beyond the scope of this article. Selection of appropriate insulation types is essential for providing desired reliability. Low-voltage (600 V or below) insulation on conductors is usually rated at 94 F with NEC type thermoplastic high heat nylon (THHN) coated wire insulation being used overhead in dry locations and NEC type rubber high heat waterproof (RHHW-2) or XLP-2 (cross-linked polyethylene) in damp, wet, or underground locations. Medium-voltage cables (1,000 V or more) are usually shielded, with 194 F or 221 F rated ethylene propylene rubber (EPR) or XLP insulation, and with 100%, 133%, or 173% insulation levels selected, based on the system neutral grounding.

If the system neutral is solidly grounded, then a 100% insulation level is normally specified. If the system neutral is impedance grounded and will be allowed to operate for up to an hour phase grounded, then 133% insulation level is normally specified. If the system neutral is impedance grounded and will be allowed to operate for more than one hour with a phase grounded, then 173% insulation level is normally specified. (High voltage is 69,000 V or greater, which is not normally used inside data centers and is typically designed to be installed outdoors for utilities.)

Data centers require a highly robust and reliable electrical infrastructure that far surpasses that of commercial and industrial facilities. In addition, elevated temperatures are encountered in many areas as operators try to increase PUE and operational efficiency. Meeting these operational efficiencies requires proper specification of equipment and wiring, and implementation of design methods with appropriate voltages and systems. A coordinated effort is needed to ensure the data center’s electrical infrastructure will be built to last. 

Christopher M. Johnston is a senior vice president and the chief engineer for Syska Hennessy Group's critical facilities team. Johnston specializes in the planning, design, construction, testing, and commissioning of mission critical 7x24 facilities, and leads team research and development efforts to address current and impending technical issues in critical and hypercritical facilities. With more than 40 years of engineering experience, he has served as quality assurance officer and supervising engineer on many projects.

<< First < Previous 1 2 3 Next > Last >>

HEINZ , CA, United States, 06/06/13 06:35 PM:

In the example on P40:
For a continuous load of 400A, the NEC requires a feeder that can carry 1.25 the continuous 400A = 500A.
So how does a 100% rated CB save on cabling costs.
Also, for a standard 80% rated CB, the terminal temp rating up to 100A is 60*, and 75* for over 100A. What is the temp rating for the terminals of a 100% rated CB?
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Robotic safety, collaboration, standards; DCS migration tips; IT/OT convergence; 2017 Control Engineering Salary and Career Survey
Integrated mobility; Artificial intelligence; Predictive motion control; Sensors and control system inputs; Asset Management; Cybersecurity
Big Data and IIoT value; Monitoring Big Data; Robotics safety standards and programming; Learning about PID
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This article collection contains several articles on how automation and controls are helping human-machine interface (HMI) hardware and software advance.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Big Data and bigger solutions; Tablet technologies; SCADA developments
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me