Network controls for electrical systems



There is a movement in the engineering design community toward networking controls for electrical power systems. Courtesy: CFE MediaControl and monitoring: Before decisions are made to change the state of a network, the system status and the various parameters that would be used to decide what changes should be made must be verified. For high-reliability networks, there are two data collection systems that can be compared to make sure that the network is functioning properly and the data is correct. For very critical networks where there is automatic switching or other changes in the network state, three systems are used and the best two out of three data sets are used to make the correct decision. If a human operator is assessing the network condition, two sets of data are generally adequate since the operator can, from prior experience, make an educated decision on which data set more accurately reflects the actual network conditions. 

Strong or weak ties: In SPS network design there must be a balance between strong and weak ties between sections. The network failure examples have a good mix of failures caused by strong and weak ties. For instance, the 1965 blackout was initiated by an overcurrent relay tripping out a transmission line well below its rated capacity—a weak tie. However, the failure cascade was the result of a series of strong ties attempting to maintain the network voltage and frequency. So does one design a network with all strong ties, so that the network will always try to keep itself operational? Or does one design a network with all weak ties, so that every small disturbance will segment the network into many sections, with each attempting to maintain its own operation while letting the adjacent sections fail? 

Network stability (or instability) is the subject of many very long, involved analyses, which are well outside the scope of this article, but they have some nuggets of truth that we will extract. Networks are stable as long as the various elements are balanced and become unstable when the elements become unbalanced. This seems obvious, but in every example the cascaded failures were initiated by a large change in the network load or the network generating capacity. Let us suppose for a moment that we were able to recreate one of the aforementioned blackouts, say the 2003 Northeast Blackout. The issues with the control and monitoring problems were addressed already, so we can start with the first large step load change (the generating station shutdown). If this generating station was shut down slowly, over a period of time instead of all at once, there would have been less impact on the network and the initial step load disturbance would not have occurred. For example, if the generating station had four 1000 MW generators, the operators could have shut down one generator at a time, waited until the network was stable after assuming that load, and then shut down another generator. Another alternative would have been to notify the network controller so that he could bring peaking units on line to add to the spinning reserves, before the generating station was dropped offline. 

We could second-guess nearly every event that occurred in the 2003 blackout or any other similar occurrence and still not solve the basic problem. The key to the stability of any network is to avoid network disturbances. When they occur, operating personnel must know in advance what actions they should take in order to restabilize the network. In particular, areas in which misunderstandings can occur should be clarified to prevent worsening the disturbance. For example, operating personnel reduced voltage to comply with the request to reduce load, when, in reality, the request to reduce load was meant for the operators to disconnect loads. While this was a minor misunderstanding, it had the opposite effect from what was intended and worsened the network disturbance, not mitigated it.

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Robotic safety, collaboration, standards; DCS migration tips; IT/OT convergence; 2017 Control Engineering Salary and Career Survey
Integrated mobility; Artificial intelligence; Predictive motion control; Sensors and control system inputs; Asset Management; Cybersecurity
Big Data and IIoT value; Monitoring Big Data; Robotics safety standards and programming; Learning about PID
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This article collection contains several articles on how automation and controls are helping human-machine interface (HMI) hardware and software advance.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Big Data and bigger solutions; Tablet technologies; SCADA developments
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me