The third option when facing switchgear issues

Modernization may be an alternative to the common repair vs. replace choices


It may be possible to leave the switchgear structure and bussing in place and upgrade the active components with the latest state-of-the-art circuit breakers. Courtesy: Schneider ElectricElectrical switchgear has two types of components that make up the system, which can be referred to as passive and active. The passive components consist of such things as the steel framing channels, cover plates, barriers, horizontal and vertical bus structures, as well as components that make up the mechanical structure of the equipment. The critical active components are the power circuit breakers or fused devices that comprise the overcurrent protective system.

Generally speaking, 20 years has been the traditional useful life expectancy for electrical power distribution equipment that has been maintained according to the electrical manufacturer’s recommendations. Of course, there are numerous installations of equipment that have been in operation for well over 20 years. In many of these cases, the equipment may appear to be working, but there are operational issues that need to be addressed.

Even with annual preventive maintenance, there may be instances where the life span is shortened. Factors to consider include the operating environment and the availability of spare parts. But there are ways not only to extend, but also to optimize the useful life of the equipment. 

Myth #1: When switchgear problems arise, the only options are to maintain the aging equipment or replace it with new equipment.

It is important to consider not just component costs, but other cost factors when looking at upgrading switchgear equipment. Courtesy: Schneider ElectricWhen faced with the repair versus replace dilemma, facility managers may now opt to modernize the existing switchgear lineup. As previously stated, both passive and active components require routine preventive maintenance to help optimize equipment reliability. As a rule, the passive components have a longer life than the active components as their structure is typically less complex.

So, why replace the entire structure when problems arise? A more cost feasible alternative would be to leave the switchgear structure and bussing in place and upgrade the active components with the latest state-of-the-art circuit breakers.

Direct replacement and retrofill modernization solutions are available for adapting the latest technology circuit breakers into a switchgear or switchboard. These solutions are available to replace a variety of low-voltage and medium-voltage OEM circuit breakers. Both options are designed to improve reliability, reduce maintenance, and increase equipment capabilities.

  • Direct replacement: Via an adaptor cradle, direct replacement circuit breakers are designed to fit into the existing switchgear cubicle with little-to-no modification to the switchgear cell. Direct replacement solutions reduce downtime since there is minimal (if any) outage on the equipment bus.
  • Retrofill: The existing switchgear cell and bus are reconfigured to accept the new circuit breaker. This option requires a longer bus outage since the internal cell is being modified.

For both the direct replacement and retrofill modernization solutions, new cubicle doors are provided to match the existing equipment and new circuit breaker face. Designs are available for any manufacturer’s switchgear.

The benefits of upgrading include:

  • Improved reliability: Dash-pot style or air break interrupting devices on existing circuit breakers may have reliability issues, and aging materials reduce equipment reliability.
  • Reduced maintenance costs: Older power circuit breakers require periodic maintenance and overhaul, which is expensive and time-consuming, and many components for existing circuit breakers are no longer supported.
  • Increased capabilities: Fault current interruption, trip unit accuracy and repeatability, arc flash limiting circuit breaker availability, and power metering, monitoring and communication availability. 

Myth #2: The cost is too high.

If replacing the existing switchgear, there are a number of costs to consider in addition to the purchase price of the new equipment, such as: 

  • The cost of demolition and removal of the existing switchgear lineup equipment and the associated contractor labor hours.
  • The potential disruption to the facility’s processes and workflow during the course of changing out the equipment. Unless process loads can be rerouted temporarily during the demolition of old equipment and installation of the new equipment, the cost of lost production can be substantial.
  • An often overlooked consideration is conduit placement. Installing new switchgear (which is usually smaller than the older/obsolete equipment it is designed to replace) requires that existing conduit above and below the equipment be moved. As such, the cables may have to be spliced or replaced, also adding to the cost. 

Don’t overlook factors such as conduit replacement or maintenance practices on the switchgear when considering how to best upgrade the equipment. Courtesy: Schneider ElectricA direct replacement or retrofill solution minimizes these expenses. There is no demolition of the existing lineup. The disruption to production is minimized, and may even be reduced to the time to rack out the old circuit breakers and rack in the new direct replacement units.

The modernization solutions eliminate the time-consuming, expensive task of moving conduits and replacing cables because the footprint of the existing equipment remains intact. Cables do not need to be touched, eliminating the possibility of damage. 

Myth #3: If the equipment is modified, the UL mark will be void.

The UL mark indicates the OEM product left the factory complying with industry adopted levels of safety and performance, generally the applicable UL standard and the NEC. Modification of the equipment does not necessarily void the UL mark. Many products are designed to be modified in the field, such as cutting holes for conduit entry.

Regardless of whether repair, replace or modernization is chosen, the goal is the same: improved reliability and lower life-cycle costs. Courtesy: Schneider ElectricIt is the responsibility of the authority having jurisdiction to assess the acceptability of the field modifications or to determine if they are significant enough to require one of UL's Field Engineering Services staff to evaluate the modified product. It is not possible for UL to confirm that the product continues to meet the applicable certification safety requirements unless the field modifications are specifically investigated by UL. For a fee, UL will perform a field inspection of the newly installed circuit breaker(s) and field certify the equipment.

Electrical equipment and power distribution systems have never been designed to be or intended to remain perpetually energized without interaction by the owner. Depending on when the switchgear was installed and how it has been utilized, the equipment may be in a condition somewhere between satisfactory performance and nonfunctional. The latter usually occurs as equipment approaches the end of its expected design life. If maintenance has not been regularly performed, this less-than-satisfactory condition may be entered prematurely, and a shortened useful life of the components may be the result.

While the direct replacement and retrofill options are two different modernization solutions, they provide the same end result: improved power system reliability and lower lifecycle costs.   

Key Points

  • Among the factors to consider when reviewing the lifecycle of switchgear are the operating environment and the availability of spare parts.
  • The benefits of upgrading switchgear include improved reliability, reduced maintenance costs and increased capabilities.
  • Modification of the equipment does not necessarily void the UL mark. In fact, for a fee, equipment and be recertified after modification.

Patrick , , 10/02/13 06:09 AM:

This would also seem a suitable time to look at the technologies now available for monitoring the switchgear.

With real time monitoring any anomalies can be picked up so maintenance is no longer rigidly time-based.
NARESH , Non-US/Not Applicable, India, 10/03/13 12:11 AM:

Very useful & informative especially for old installations where repair vs. replacement of ageing Electrical Equipment(Switchgear) is a burning issue.
Patrick , , 10/09/13 04:12 AM:

I was looking at regular thermography surveys for our switchgear temperatures but also found SAW based sensors which will monitor constantly the busbar/cable temperatures.

A quarterly visits from the thermograph firm is cheaper than the cost of a SAW set for a switchgear cabinet.

But long-term the ability to have a continuing record with anomalies and high operating temperature may means we can target replacement better.
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Choosing controllers: PLCs, PACs, IPCs, DCS? What's best for your application?; Wireless trends; Design, integration; Manufacturing Day; Product Exclusive
Variable speed drives: Smooth, efficient, electrically quite motion control; Process control upgrades; Mobile intelligence; Product finalists: Vote now; Product Exclusives
Machine design tips: Pneumatic or electric; Software upgrades; Ethernet advantages; Additive manufacturing; Engineering Leaders; Product exclusives: PLC, HMI, IO
This article collection contains the 5 most referenced articles on improving the use of PID.
Learn how Industry 4.0 adds supply chain efficiency, optimizes pricing, improves quality, and more.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security