Developments in wireless communication for industrial use

Recently the wireless industry has seen new advances in Wi-Fi-enabled devices in the commercial space. New features to improve throughput are becoming standard for many commercial devices.


Figure 1: Industrial environment creates multipath interference, as shown in this diagram with the Moxa AWK-1127 wireless access point. For wireless radios that support media access control (MAC) cloning or MAC transparency this feature, such as the MoxaToday's industrial Wi-Fi networks are primarily 2.4-GHz deployments. These wireless networks were designed before the widespread acceptance of 5-GHz chipsets. The low cost of the 2.4-GHz designs found in countless client devices make it the common denominator for existing Wi-Fi.

Many 2.4-GHz technologies can be found in operation in addition to Wi-Fi at industrial sites. For example, active Radio-frequency identification (RFID) in vehicle toll collection and vehicle fleet identification systems operate in the 2.4-GHz range. IEEE 802.15.4 includes ZigBee, a low-bandwidth wireless mesh used for monitoring applications, also operates in the ISM 2.4-GHz band. Many IEEE 802.11b/g access points are deployed for different industrial applications. This band also may be shared by enterprise and guest networks, as well as by industrial monitoring and control networks. IEEE 802.11 is a collection of wireless local area network standards. (See link in this article online.)

Many legacy industrial control networks that employed the IEEE 802.11b standard are particularly problematic. When these access points and clients transmit on channels shared with other higher speed networks such as IEEE 802.11n, they have the effect of slowing down everything sharing the channel. In fact, the performance of the high-speed network sharing the channel can be reduced to a crawl by just one client connecting frequently and transferring at 1 MB/sec.

To make matters worse, there are only three non-overlapping channels on a 2.4-GHz band. If one of these IEEE 802.11b networks is on an overlapping, adjacent channel, there will be significant performance issues caused by collisions on the overlapping channels. It also can be an enormous challenge fixing issues on existing deployments since the many networks are managed by different individuals or departments and can be difficult to coordinate. These are a few reasons why most wireless local area network (WLAN) professionals do not recommend 2.4-GHz for new deployments.

IEEE 802.11n: Equals more throughput and better productivity

The move away from the 2.4-GHz band has been going on for quite a while. It started with the adoption of the IEEE 802.11a standard, which was primarily used for industrial applications and saw low adoption in the commercial space. Now with the proliferation of IEEE 802.11n and the low cost of 5-GHz chipsets, the industry is seeing a significant move toward all 5-GHz technology for enterprise and industrial applications. Currently, the 5-GHz channels are relatively clean with little interference. The channels are planned such that there are no overlapping 20-MHz channels.

IEEE 802.11n improved throughput. Whereas IEEE 802.11a allows a maximum data rate of 54 Mbps, with IEEE 802.11n, one 20 MHz channel and single spatial stream can provide a data rate up to 72 Mbps. By itself, this is a modest improvement, but the standard doesn't stop there. IEEE 802.11n also enables the use of multiple antennas (MIMO, which stands for multiple in, multiple out), transmit and receive chains, and the use of 40 MHz wide channels to allow up to 600 Mbps theoretical max, an impressive data-rate improvement. However, care must be taken to not overlap these wider channels, so planning is critical to avoid the same kind of issues that earlier 2.4-GHz deployments have faced. 

IEEE 802.11ac: Gigabit

The next big wave in Wi-Fi is IEEE 802.11ac, which brings the promise of gigabit performance as well as other improvements. To take advantage of the technology sooner, the industry has been deploying the IEEE 802.11ac standard in phases. The deployment of the first "wave" or generation of IEEE 802.11ac-based technology was in 2014.

Unlike IEEE 802.11n, which supported 2.4 GHz and 5GHz, IEEE 802.11ac is 5 GHz only. It supports 20-MHZ and 40-MHz channels but also supports much higher data rates with an 80-MHz channel width. While allowing for much higher data rates, it also reduces available channels in the spectrum; channel planning must be done to avoid overlapping. IEEE 802.11ac also provides a higher density modulation technique, called QAM-256, to achieve its high performance. Because it requires a very high signal-to-noise ratio, the client must be very close to the access point to use this modulation scheme, especially in the presence of any interference or high-noise floor.

The next generation or "wave 2" is available this year and introduces 160-MHz channel width for even higher bandwidth and multi-user MIMO, or MU-MIMO, which allows several clients to be served at a time. 

Industrial applications

The improved data throughput offered by new wireless standards is not always a key factor for adoption in the industrial space. In fact, IEEE 802.11n should continue to offer strong value for industrial users and has become the common denominator due to its fitness for industrial applications. For example, wireless often is used in industrial settings for monitoring or supervisory control and data acquisition (SCADA) applications. The amount of data sent from a client is relatively small and could be less than a few hundred bytes. This data also is polled at a low frequency. Support for block transfers at high speeds, which would be a benefit when transferring large files, essentially is irrelevant for these types of applications. The technology that has more relevance to industrial users would be the optimization of data transfer times over the channel, so that many more clients can be supported within a channel.

One feature of IEEE 802.11n that also has great relevance to industrial users is the ability to reconstruct signals in environments with a lot of multipath interference. In industrial environments, metal structures can create significant multipath interference. Since typical IEEE 802.11n-capable radios contain two antennae in a 2x2 configuration, they can support multiple spatial streams and signal reconstruction of multipath reflections.

Redundancy, loop protection

In addition to the basic technologies provided by chipset manufacturers, industrial applications sometimes require special features to ensure optimal and reliable performance for different applications. In rail applications, where train-to-wayside communication is required, system designers want more than one active wireless connection to the wayside for redundancy. This requires use of multiple radios and creates problematic network loops from the train to the ground. Therefore, a redundancy and loop prevention protocol must be used. Spanning tree protocols have been used in the past to address this, but they do not perform well in this environment due to the lossy nature of wireless (meaning it attenuates or dissipates) and the constant re-convergence that can occur during roaming.

Learn more about fast roaming technology and transportation connectivity.

<< First < Previous 1 2 Next > Last >>

Anonymous , 11/11/15 11:13 AM:

I found this article to be very informative, great work!
Thank You
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Additive manufacturing benefits; HMI and sensor tips; System integrator advice; Innovations from the industry
Robotic safety, collaboration, standards; DCS migration tips; IT/OT convergence; 2017 Control Engineering Salary and Career Survey
Integrated mobility; Artificial intelligence; Predictive motion control; Sensors and control system inputs; Asset Management; Cybersecurity
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This article collection contains several articles on how automation and controls are helping human-machine interface (HMI) hardware and software advance.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me