New day for wireless control

Technology Update: Wireless control technology will be available to more users than previously. With this simple, secure, reliable wireless control solution, it’s a new day for process operations.


Figure 1: Impact of update rate on battery life; fewer updates translate into longer life. For a simple wireless temperature measurement, once per minute, battery life nears 10 years. Courtesy: Emerson Process ManagementA new day has dawned for wireless control applications. With modifications to the PID algorithm, the ability to use wireless devices for the vast majority of applications in the process industry has emerged. Further, the new approach makes it possible to achieve control performance that's comparable to that obtained using traditional wired transmitters and wired valves.

The movement toward wireless began with the drive to improve plant operations. Plant managers saw opportunities for significant gains by accessing information about process operating conditions in remote areas. Wireless devices were the most cost-effective way to get access to remote areas, given that the cost of wireless installations is a fraction of the cost of a wired installation using traditional transmitters.

Once plants gain experience using wireless measurements, they often begin to look for a way to incorporate these wireless measurements in closed loop control.

Wireless technology challenge

Manufacturing facilities have found that slow measurement updates and nonperiodic measurement updates present technical challenges to using wireless measurements in control applications.

The underlying assumption in process control has always been that control is executed on a periodic basis and that a new measurement value is available for each execution. That approach works when power consumption is not a factor. However, power consumption is a factor for wireless devices. To achieve a 5-year battery life, a communication update rate of 8 or 16 seconds is typically required in wireless control applications as is illustrated in Figure 1.

As a result, when using traditional PID control, the calculated reset and derivative action may not be appropriate in many applications.

Two communication techniques are most appropriate when implementing control using a wireless transmitter. When continuous (periodic) update is selected, the device wakes up at a configured update period, senses the measurement, and then communicates the value. For the window technique, the device wakes up at a configured update period, senses the measurement, and then communicates the measurement if the change in value since the last communication exceeds a specified limit or if the time since the last communication exceeds a default update time. Window communications is the preferred method since for the same update period less power is required.

Using wireless measurements with standard PID

In spite of the technical challenge presented by a slow measurement update rate, there are a limited number of applications where the standard PID can be used with wireless transmitters. For controlling very slow processes, such as level or temperature, the standard PID available in most distributed control systems is a viable option. Closed loop control with wireless transmitters that use slow communications update rates (8 or 16 seconds) will work as long as the process response time is at least 4 times slower than the communication rate. The reliability of most networks is better than 99.9% when using standard PID in wireless control. However, it is prudent to add logic to switch the control to manual in case communications are lost. 

Wireless control applications

From the beginning of the development of the WirelessHART standard, the vision was that someday wireless devices would be used for control as well as for monitoring. In anticipation of the issues ahead, engineers began working on solving the problem by challenging previous assumptions about control.

What they discovered opens up the possibility of using wireless devices for the vast majority of applications in the process industry. The PID algorithm can be modified to correctly work with slow measurement updates, nonperiodic measurement updates, and loss of communication to achieve wireless control performance that is comparable to that obtained using traditional wired transmitters and wired valves.

The key is to understand that when the PID reset is implemented using a positive-feedback network, the time constant of the filter used in this network is a direct reflection of the process dynamic response. Based on this understanding, the reset calculation of the PID may be modified for wireless control.

Figure 2: Control for wireless measurement is shown. Courtesy: Emerson Process Management from “Using Wireless Measurement in Control Applications,” ISA 2013In the PIDPlus implementation, the positive feedback network used to create the reset contribution is modified to maintain the last calculated filter output until a new measurement is communicated. When a new measurement is received, the reset contribution uses the new filter output as the positive feedback contribution. For those processes that require derivative (rate) action, the derivative contribution to the PID output is recomputed and updated only when a new measurement is received. The derivative calculation uses the elapsed time since the last new measurement.

Using PIDPlus, the reset calculation automatically compensates for setpoint change and measurement update rate. The derivative component accounts for a new measurement value not being available for each execution of the PID. Thus, there is no need to modify tuning for wireless control, that is, PIDPlus tuning is determined only by progress gain and dynamics.

Performance comparison

When the PIDPlus is used with a wireless transmitter in a control application, the performance is comparable to that achieved using a wired transmitter. The closed loop response of the PIDPlus was tested for changes and unmeasured process disturbances where the wireless transmitter used window communications as illustrated in Figure 2. In these tests, the performance was compared to a standard PI controller where the wired measurement value is communicated as frequently as the PI control algorithm executes.

In this example, window communications reduced the number of communications by over 96% when compared to the number of new measurement values used in control using the wired transmitter. In Figure 3 the difference in control performance is shown in terms of integral absolute error (IAE) for periodic measurement update vs. nonperiodic.

Figure 3: Table compares communications and control comparison and improvement using PID algorithms. Courtesy: Emerson Process Management from “Using Wireless Measurement in Control Applications,” ISA 2013

In terms of loss of communication, the traditional PID typically provides poor dynamic response. The PIDPlus improves the dynamic response under these conditions. As illustrated in Figure 4, the PIDPlus provides improved dynamic response compared to the PID for the same conditions since the PIDPlus reset and derivative contribution are automatically maintained at last value on loss of communication. In addition to the testing performed as part of the PIDPlus development process, a field trial was conducted as part of the Separations Research Program at the J.J. Pickle Research campus.

Figure 4: Response for measurement loss is shown. For the past four years, PIDPlus has been a standard feature of the DeltaV distributed control system. Emerson DeltaV users can select the PIDPlus capability as one of the control parameter options. StartiWirelessHART transmitters were installed for pressure and steam flow control as part of a focus project on CO2 removal from stack gas.

Using the original plant PID tuning, the same dynamic control response was observed for setpoint changes for both steam flow and column pressure.

Opening possibilities

PIDPlus is available in a commercially available distributed control system; users can select the PIDPlus capability as one of the control parameter options. From life sciences to specialty chemicals, users have successfully implemented reliable, real-time control with wireless devices.

Beginning in fall 2014, Emerson Process Management will offer licenses for the PIDPlus wireless PID controller, at no charge. The licenses will be available through the HART Communication Foundation to plants that use WirelessHART field devices. Wireless control technology will be available to more users than previously. With this simple, secure, reliable wireless control solution, it's a new day for process operations.

- Terry Blevins is principal technologist for Emerson Process Management. Edited by Mark T. Hoske, content manager, CFE Media, Control Engineering,

Consider this

Wireless has moved beyond monitoring, to control applications. Have you?

ONLINE extra

HART Communication Foundation 

See the Control Engineering wireless page.

See more about WirelessHART and other CE articles by Terry Blevins below.

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Robotic safety, collaboration, standards; DCS migration tips; IT/OT convergence; 2017 Control Engineering Salary and Career Survey
Integrated mobility; Artificial intelligence; Predictive motion control; Sensors and control system inputs; Asset Management; Cybersecurity
Big Data and IIoT value; Monitoring Big Data; Robotics safety standards and programming; Learning about PID
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This article collection contains several articles on how automation and controls are helping human-machine interface (HMI) hardware and software advance.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Big Data and bigger solutions; Tablet technologies; SCADA developments
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me