Robot swarms: Developing efficient networks through ant colony behavior analysis

Researchers at MIT have analyzed ant colony behavior to develop better algorithms for industrial network communication, which could help improve collective decision-making among robot swarms and communication in ad hoc networks.


Researchers at MIT have analyzed ant colony behavior to develop better algorithms for industrial network communication, which could help improve collective decision-making among robot swarms and communication in ad hoc networks. Courtesy: Christine DaniloAnts, it turns out, are extremely good at estimating the concentration of other ants in their vicinity. This ability appears to play a role in several communal activities, particularly in the voting procedure whereby an ant colony selects a new nest.

Biologists have long suspected that ants base their population-density estimates on the frequency with which they—literally—bump into other ants while randomly exploring their environments.

That theory gets new support from a theoretical paper from researchers at MIT's Computer Science and Artificial Intelligence Laboratory. The paper shows that observations from random exploration of the environment converge very quickly on an accurate estimate of population density. Indeed, they converge about as quickly as is theoretically possible.

Beyond offering support for biologists' suppositions, this theoretical framework also applies to the analysis of social networks, of collective decision-making among robot swarms, and of communication in ad hoc networks, such as networks of low-cost sensors scattered in forbidding environments.

"It's intuitive that if a bunch of people are randomly walking around an area, the number of times they bump into each other will be a surrogate of the population density," said Cameron Musco, an MIT graduate student in electrical engineering and computer science and a co-author on the new paper. "What we're doing is giving a rigorous analysis behind that intuition, and also saying that the estimate is a very good estimate, rather than some coarse estimate. As a function of time, it gets more and more accurate, and it goes nearly as fast as you would expect you could ever do."

Random walks

Musco and his coauthors—his advisor, NEC Professor of Software Science and Engineering Nancy Lynch, and Hsin-Hao Su, a postdoc in Lynch's group—characterize an ant's environment as a grid, with some number of other ants scattered randomly across it. The ant of interest—call it the explorer—starts at some cell of the grid and, with equal probability, moves to one of the adjacent cells. Then, with equal probability, it moves to one of the cells adjacent to that one, and so on. In statistics, this is referred to as a "random walk." The explorer counts the number of other ants inhabiting every cell it visits.

In their paper, the researchers compare the random walk to random sampling, in which cells are selected from the grid at random and the number of ants counted. The accuracy of both approaches improves with each additional sample, but remarkably, the random walk converges on the true population density virtually as quickly as random sampling does.

That's important because in many practical cases, random sampling isn't an option. The only way to explore it is to pick an individual member and start tracing connections.

Similarly, in ad hoc networks, a given device knows only the locations of the devices in its immediate vicinity; it doesn't know the layout of the network as a whole. An algorithm that uses random walks to aggregate information from multiple devices would be much easier to implement than one that has to characterize the network as a whole.

Repeat encounters

The researchers' result is surprising because, at every step of a random walk, the explorer has a significant likelihood of returning to a cell that it has already visited. An estimate derived from random walks thus has a much higher chance of oversampling particular cells than one based on random sampling does.

Initially, Musco said, he and his colleagues assumed that this was a liability that an algorithm for estimating population density would have to overcome. But their attempts to filter out oversampled data seemed to worsen their algorithm's performance rather than improve it. Ultimately, the were able to explain why, theoretically.

"If you're randomly walking around a grid, you're not going to bump into everybody, because you're not going to cross the whole grid," Musco said. "So there's somebody on the far side of the grid that I have pretty much a zero percent chance of bumping into. But while I'll bump into those guys less, I'll bump into local guys more. I need to count all my interactions with the local guys to make up for the fact that there are these faraway guys that I'm never going to bump into. It sort of perfectly balances out. It's really easy to prove that, but it's not very intuitive, so it took us a while to realize this."


The grid that the researchers used to model the ants' environment is just a special instance of a data structure called a graph. A graph consists of nodes, typically represented by circles, and edges, typically represented as line segments connecting nodes. In the grid, each cell is a node, and it shares edges only with those cells immediately adjacent to it.

The researchers' analytic techniques, however, apply to any graph, such as one describing which members of a social network are connected, or which devices in an ad hoc network are within communication range of each other.

If the graph is not very well connected—if, for instance, it's just a chain of nodes, each connected only to the two nodes adjacent to it—then oversampling can become a problem. In a chain of, say, 100 nodes, an explorer taking a random walk could get stuck traversing the same five or six nodes over and over again.

As long as two random walks starting from the same node are likely to branch out in different directions, as is often the case in graphs describing communication networks, random walks remain virtually as good as random sampling.

Moreover, in the new paper, the researchers analyze random walks executed by a single explorer. Pooling observations from many explorers would converge on an accurate estimate more quickly. "If they were robots instead of ants, they could get gains by talking to each other and saying, 'Oh, this is my estimate,'" Musco said.

Massachusetts Institute of Technology (MIT) 

- Edited by Chris Vavra, production editor, Control Engineering, CFE Media, See more Control Engineering industrial networking stories.

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Controller programming; Safety networks; Enclosure design; Power quality; Safety integrity levels; Increasing process efficiency
Additive manufacturing benefits; HMI and sensor tips; System integrator advice; Innovations from the industry
Robotic safety, collaboration, standards; DCS migration tips; IT/OT convergence; 2017 Control Engineering Salary and Career Survey
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This article collection contains several articles on how automation and controls are helping human-machine interface (HMI) hardware and software advance.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me