PID--The Basic Technique for Feedback Control

01/01/1997


A feedback controller is designed to generate an output that causes some corrective effort to be applied to a process so as to drive a measurable process variable towards a desired value known as the setpoint. Shown is a typical feedback control loop with blocks representing the dynamic elements of the system and arrows representing the flow of information, generally in the form of electrical signals. Virtually all feedback controllers determine their output by observing the error between the setpoint and the actual process variable measurement.


PID control
A proportional-integral-derivative or 'PID' controller looks at the current value of the error, the integral of the error over a recent time interval, and the current derivative of the error signal to determine not only how much of a correction to apply, but for how long. Those three quantities are each multiplied by a tuning constant and added together to produce the current controller output CO(t) thusly:



(eq. 1)

In equation (1), P is the proportional tuning constant, I is the integral tuning constant, D is the derivative tuning constant, and e(t) is the error between the setpoint SP(t) and the process variable PV(t) at time t.

e(t) = SP(t) - PV (t)

(eq. 2)

If the current error is large, has been sustained for some time, or is changing rapidly, the controller will attempt to make a large correction by generating a large output. Conversely, if the process variable has matched the setpoint for some time, the controller will leave well enough alone.

Tuning a PID Controller

Conceptually, that's all there is to a PID controller. The tricky part is 'tuning' it; i.e., setting the P, I, and D tuning constants so that the weighted sum of the proportional, integral, and derivative terms produces a controller output that steadily drives the process variable in the direction required to eliminate the error.

marily by the derivative term in equation (1). This will cause the controller to initiate a burst of corrective efforts the instant the error changes from zero. The proportional term will then come in to play to keep the controller's output going until the error is eliminated.

iminated, the controller will continue to generate an output based on the history of errors that have been accumulating in the controller's integrator. The process variable may then overshoot the setpoint, causing an error in the opposite direction.

cumulated error are eliminated. Meanwhile, the derivative term will continue to add its share to the controller output based on the derivative of the oscillating error signal. The proportional term too will come and go as the error waxes and wanes.

apidly.

l Engineering magazine in 1991. Related subjects such as feedforward control, frequency domain analysis techniques, and self-tuning control will be addressed in future installments of this series.

Vance VanDoren
Consulting Editor

Vance J. VanDoren has a BS and MS in Control Engineering from Case Western Reserve University. He holds a Ph.D. in Control Engineering from Purdue University's School of Mechanical Engineering.





No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Learn how to create value with re-use; gain productivity with lean automation and connectivity, and optimize panel design and construction.
Go deep: Automation tackles offshore oil challenges; Ethernet advice; Wireless robotics; Product exclusives; Digital edition exclusives
Lost in the gray scale? How to get effective HMIs; Best practices: Integrate old and new wireless systems; Smart software, networks; Service provider certifications
Fixing PID: Part 2: Tweaking controller strategy; Machine safety networks; Salary survey and career advice; Smart I/O architecture; Product exclusives
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Look at the basics of industrial wireless technologies, wireless concepts, wireless standards, and wireless best practices with Daniel E. Capano of Diversified Technical Services Inc.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.