Software Helps Remote Robot Maintain Generators, Cut Downtime

When you measure downtime in thousands of dollars per minute, reliability and good maintenance become practically priceless. Unfortunately, knowing this doesn't make it any easier to get inside a nuclear reactor's pressurized steam generators to inspect, clean, and maintain its pipes and tubes.

01/01/1998


When you measure downtime in thousands of dollars per minute, reliability and good maintenance become practically priceless. Unfortunately, knowing this doesn't make it any easier to get inside a nuclear reactor's pressurized steam generators to inspect, clean, and maintain its pipes and tubes.

That's why Foster-Miller Inc. (Waltham, Mass.) developed Cecil, one in a series of maintenance robots for steam generators. Cecil uses hardware and software from Opto 22 (Temecula, Calif.) to control its robotic inspection and cleaning functions.

"The reliability and capability of the hardware, and the single source, integrated FactoryFloor software running on a Microsoft Windows NT platform allowed us to migrate to a stable and very functional Windows development environment," says Dan Foley, Foster-Miller's control system engineer.

Before in-bundle, systematic, remotely controlled inspection devices became available, the suspected bad tubes were plugged or sleeved based only on primary-side eddy current inspections. Cecil overcomes these obstacles because it's inserted through the steam generator's inspection hand hole and moves to any point in the lower tube bundle along a monorail temporarily installed in the blowdown lane. An operator in a remote low-radiation area uses Cecil's color video probe and light source to inspect the tube bundle, monitor high pressure water cleaning of sludge by its flexible lance, and document "before" and "after" conditions.

The robot has evolved over several years and is now used as a secondary-side maintenance tool in nuclear plants worldwide. Foster-Miller reports that utilities using Cecil have fewer forced outages, reduced maintenance, less personnel radiation exposure, and prolonged steam generator life.

All of Cecil's analog and digital control signals, and sensor feedback for support equipment and water process functions, originate in an Opto 22 PC-based control system. Cecil's 100 or more optically-isolated intelligent I/O devices control all system functions. These devices are given tagnames by OptoControl, Opto 22's flowchart-based control language, which is part of the FactoryFloor suite.

Several flowcharts are then developed to control specific robotic functions and support systems, such as locomotion, lance and barrel motion, and water process functions. The flowcharts are then downloaded to and executed by an Opto 22 controller near the steam generator's hand hole. Joystick devices, interfaced with the controller and motion controllers via a serial port, provide the basic motion capabilities for each robot axis. The OptoControl language includes a library of serial functions integrated with standard analog, digital, logic, math, and host communications commands.

"It's easy to split a design into parts that best suit a person's area of expertise. Let controls people work with the flowcharting, let network people work with OptoServer and OptoConnect; and let others develop the human interface in OptoDisplay, Visual Basic, etc.," adds Mr. Foley.

For more information about Foster-Miller and Cecil , ; for more information about Opto 22 , visit www.controleng.com/info .





No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
Control Engineering Leaders Under 40 identifies and gives recognition to young engineers who...
Learn more about methods used to ensure that the integration between the safety system and the process control...
Adding industrial toughness and reliability to Ethernet eGuide
Technological advances like multiple-in-multiple-out (MIMO) transmitting and receiving
Virtualization advice: 4 ways splitting servers can help manufacturing; Efficient motion controls; Fill the brain drain; Learn from the HART Plant of the Year
Two sides to process safety: Combining human and technical factors in your program; Preparing HMI graphics for migrations; Mechatronics and safety; Engineers' Choice Awards
Detecting security breaches: Forensic invenstigations depend on knowing your networks inside and out; Wireless workers; Opening robotic control; Product exclusive: Robust encoders
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
News and comments from Control Engineering process industries editor, Peter Welander.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
Anthony Baker is a fictitious aggregation of experts from Callisto Integration, providing manufacturing consulting and systems integration.
Integrator Guide

Integrator Guide

Search the online Automation Integrator Guide
 

Create New Listing

Visit the System Integrators page to view past winners of Control Engineering's System Integrator of the Year Award and learn how to enter the competition. You will also find more information on system integrators and Control System Integrators Association.

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.