Top-down strategies innovate mechatronic machine engineering

Original equipment manufacturers need to manage the design process and recognize mechatronic trends to stay ahead of the technology curve. By developing a portfolio of mechanical, electrical, and software modules, it becomes easier to quickly assemble “custom” machines to meet customer requests. Mechatronics is the convergence of power, electronics, and mechanical systems, including embedded software and hardware in engineering design.

02/11/2014


Machine automation applications demand high-performing, simple to use, maintenance-free technologies. Successful motor drive integration depends on a high-performing design environment that brings together powerful engineering tools and experienced applicMechatronics is the interdisciplinary collaboration of power, electronics, and mechanical systems, including embedded software and hardware—or, more simply stated, the convergence of engineering disciplines. Mechatronic engineering improves component integration, yielding smaller machines that perform better and cost less to build and support. Developing a mechatronic team demands top-down strategies and a synergistic view of engineering design tools, drive systems, and control design.

Before a mechatronics approach is in place, many machine builders’ R&D efforts often begin at the point of sale. A traditional engineering approach taps electrical, mechanical, and software engineers, each bringing to the table a specific skill set. A mechanical engineer may rework an existing machine design and remit it to the electrical engineer, who then fashions a control panel out of standard technology. Then a software engineer is tasked with executing the project. Delays occur anytime incongruencies exist between the machine concept, component selection, mechanical design, electrical design, program methodology, and even the end user’s intended purpose for the machine. Out of time, the software engineer might be expected to patch together a mechanical hardware concept with a misaligned electrical hardware concept, without even fully understanding why they don’t work together.

Depart from traditional engineering

Mechatronics reduces inefficiency, errors, and unnecessary expense by breaking down traditional engineering silos. At project onset using a mechatronic approach, electrical, mechanical, and software engineers address the actual product a customer wants to handle. They discuss the operations, or motions, required to form and handle the product, then make recommendations on how best to perform the operations. Precisely designed components—motors, drives, and gearboxes—can be viewed as standardized modular units fulfilling requirements for speed, torque, motion sequence, dynamics, and positioning accuracy. The engineers tap proven modular components and software, knowing precise specifications about what each can do.

After proffering design recommendations, the team collaborates to identify the implications of their recommendations on how the machine will ultimately perform. The simplicity of modular solutions more often than not results in better, stable product handling, and a safer, more efficient machine. Modules are selected and controls determined based on the features a customer needs. Code required to combine mechanical and electrical specifications is described according to machine functions—mechatronic modules, rather than programming language. The human machine interface (HMI) is developed using familiar terms, such as product dimensions and machine speed.

Through the collaborative machine building process, the entire team gains valuable insights into all three engineering disciplines. With each successive project, they are better equipped to assess feasibility relative to the other disciplines and, in many cases, take it to the next level by developing new machine control capabilities to expand customer offerings and support new business opportunities. Canned and tested modular components offer high reliability and combine engineering requirements, so the result is a smaller footprint. The process can yield innovative new methods to accomplish machine tasks. For example, a servo driven belt might replace a metal cam for a loading arm. Or, a frequency drive on a knee mechanism might replace hydraulics for high-speed, high-power applications. These machines are easier to support because fully integrated modules don’t require separate software.

Build a productive engineering team

Mechatronics requires synergistic ways of looking at design tools and drive systems. Precisely designed components—motors, drives, gearboxes—can be viewed as standardized modular units fulfilling requirements for speed, torque, motion sequence, dynamics,Although a much-hyped industry buzzword, mechatronics is a relatively new concept. It can be challenging to find engineers with a solid education or experience in multiple engineering fields. A number of prominent engineering colleges offer courses in mechatronics, yet the moniker does not yet identify prospective candidates to fill real-world positions. The practice continues with hiring mechanical engineers, electrical engineers, and programmers as separate entities. Therefore, the best plan to secure qualified mechatronic engineers is to create in-house resources. A number of strategies can help create structure and develop in-house mechatronic resources.

Businesses that are under constant pressure to design and deliver machines don’t always make time for engineers to collaborate or innovate. The mechatronic approach requires top-down leadership to schedule some time to make R&D a priority. A simple, yet effective, entry ramp can be the rework of an old design taking a cross-discipline approach. Engineers must also stay abreast of current technologies. There is a near-constant stream of mechatronic innovation, some of which can vastly improve the machine design process and product. As an example, some vendors now offer software that combines panel layout with drive sizing and cam design. Motor-mounted drives can eliminate electrical cabinets, which have a direct impact on the mechanical design of a machine.

It pays to set specific goals when defining the scope of a mechatronic project. In some cases, goals may be communicated to customers as well. Achievement of benchmarks, such as a percentage in parts reduction, reliability, or energy efficiency, should be rewarded so the mechatronic team realizes the importance of continuous improvement via collaboration. Cross-training also plays a role in cultivating synergy. There must be a plan in place to provide detailed project information to each engineer on the team. A mechanical engineer who understands the potential of a control system will be more likely to simplify mechanical solutions. An electrical engineer who understands the “five simple machines” of physics will be more open to apply an open loop system or a smaller controller. A software engineer who understands “three sides of control” can synchronize the motion of a machine to guarantee the safe movement of product.


<< First < Previous 1 2 Next > Last >>

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Learn how to create value with re-use; gain productivity with lean automation and connectivity, and optimize panel design and construction.
Go deep: Automation tackles offshore oil challenges; Ethernet advice; Wireless robotics; Product exclusives; Digital edition exclusives
Lost in the gray scale? How to get effective HMIs; Best practices: Integrate old and new wireless systems; Smart software, networks; Service provider certifications
Fixing PID: Part 2: Tweaking controller strategy; Machine safety networks; Salary survey and career advice; Smart I/O architecture; Product exclusives
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Look at the basics of industrial wireless technologies, wireless concepts, wireless standards, and wireless best practices with Daniel E. Capano of Diversified Technical Services Inc.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.