Choosing between centralized and distributed control system designs

07/28/2014


The power of the purse

There are upfront and long-term costs to consider with either a centralized or distributed design. From a control perspective, there are hardware costs of the controllers and the start-up costs of the control system. From an I/O perspective, there are hardware costs of the I/O platform and the installation costs to physically connect this hardware to the field devices. For both control network and fieldbus network installations, there may be additional third-party network certification costs.

Centralized control systems tend to have lower control hardware costs compared to distributed systems. This is simply due to fewer controllers in centralized systems. Centralized control system start-up costs are more complicated to determine. As noted in the previous example, installation phasing and operational expectations can impact these costs. It is import to determine upfront to what extent this might be the case, as it can have a big impact on the total lifecycle cost of your system.

From an I/O standpoint, centralized systems tend to achieve economy of scale on hardware components. To illustrate this, consider the I/O modules in a traditional hardwired I/O system. Assume a module controls 16 devices, and you have 200 devices to control. In a centralized system, you would need 13 I/O modules. If the same 200 points are distributed evenly across 10 process areas, you would need 20 I/O modules to meet the same requirement. The same principle applies in varying degrees to all the physical hardware in your I/O system. The more remote I/O areas in your system, the more I/O hardware you will tend to need for that system.

Counterbalancing this are labor and material installation costs. The more physically spread out the controlled equipment and sensors are from the I/O hardware, the higher these installation costs will be. Centralized I/O systems magnify these costs; distributed I/O systems mitigate them.

Your selection of I/O platform could have a large influence on the installation costs. Traditional hardwired I/O platforms require a separate wiring run between each field device and some I/O module. Network platforms may allow you to wire from device to device without the need for individualized runs back to the I/O system. You will tend to pay more for I/O hardware and cabling media, but your overall installation costs could be significantly lower.

On the fieldbus side, recent trends have been away from some of the open platforms, such as ControlNet, an open industrial network protocol for industrial automation applications. In that case, trending has been toward industrial Ethernet solutions. Alternatively, the AS-Interface is growing in acceptance and installations, and plays nicely as a partner network with higher level fieldbus platforms including those using industrial Ethernet.

Integration considerations

There are a few things to consider from a systems integration standpoint-physical and functional. The controllers in your system will often have to communicate with other process, visualization, and business systems. If your budget permits, a common broadband industrial network platform between these items will simplify configuration and maintenance over the life of your system, and allow for the most efficient communications between all systems.

The control, I/O, and components of your system will likely use some network features to a greater or lesser degree. Your network will only be as good as your cabling, connection, and switches. Industrial networks are often electrically noisy places. They are subject to electromagnetic interference, temperature ranges, dust, and humidity not found in office environments. Make sure you have the right cable for the job, with all of your network hardware properly installed and configured.

Older legacy systems usually contain low-speed and/or proprietary networks. If your control system is composed of these elements or must integrate with such a system, there is more to consider. Because of the slower speed of the network and communication protocols in this environment, special handling must be placed on how information is exchanged with other systems.

If there is process-critical real-time status that needs to be exchanged with other process systems, old-school hardwired signal exchange might still be appropriate under such circumstances. For other data, specialty network adapters can be found that convert between these proprietary platforms and more modern network protocols.

If there is a large amount of data to exchange with a host system, concentrating the data in a single location might be an option to consider. This will often yield the most efficient communication method under such circumstances. The trade-off is communication performance versus a single point failure. In a centralized system, it is relatively easy to concentrate the data. In a distributed system, you will need to select a controller to host and manually message the data from the other controllers in the system.

From our past, toward our future

The question of how much to centralize or distribute a control system has been around for a long time. It pertains to both the control and I/O aspects of the system. While certain hardware platforms may lean toward one direction or the other, it is a design concept independent of these platforms. Systems of any substance are rarely completely centralized or distributed. The best solution on this spectrum is driven by a variety of factors.

The normal operation of your equipment has a large influence on the degree to which you should centralize or distribute your system. You have to examine both the operational aspects and the physical layout of your equipment. How this equipment is installed over time, and how likely it is to change are also factors to consider.

Centralized systems tend to have lower hardware costs than distributed solutions, but often have higher installation costs. The opposite is true for distributed solutions. When putting it all together, remember to consider the system integration issues between your system and others.

This question will continue to be with us in the foreseeable future. As devices continue to get smarter, fieldbus and industrial network installations become more prevalent, and control platforms continue to evolve, the question of how to group or distribute these items remains. Understanding the core principles involved will help you develop the right design for your control system-now and in the future.

David McCarthy is president and CEO of TriCore Inc., a national systems integration firm based in Racine, Wis., with offices in Glendale, Calif., and Mesa, Ariz. Before he founded TriCore in 1991, McCarthy served in various capacities at Alfa Laval/Tetra Pak, including manager of engineering for its U.S.-based food engineering company. McCarthy, who has more than 30 years of experience in automation, is a computer scientist from Rochester Institute of Technology.

This article appears in the Applied Automation supplement for Control Engineering and Plant Engineering


<< First < Previous Page 1 Page 2 Next > Last >>

The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Women in engineering; Engineering Leaders Under 40; PID benefits and drawbacks; Ladder logic; Cloud computing
Robotic integration and cloud connections; SCADA and cybersecurity; Motor efficiency standards; Open- and closed-loop control; Augmented reality
Controller programming; Safety networks; Enclosure design; Power quality; Safety integrity levels; Increasing process efficiency
This article collection contains several articles on how advancements in vision system designs, computing power, algorithms, optics, and communications are making machine vision more cost effective than ever before.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Women in engineering; Engineering Leaders Under 40; PID benefits and drawbacks; Ladder logic; Cloud computing
Robotic integration and cloud connections; SCADA and cybersecurity; Motor efficiency standards; Open- and closed-loop control; Augmented reality
Controller programming; Safety networks; Enclosure design; Power quality; Safety integrity levels; Increasing process efficiency
This article collection contains several articles on how advancements in vision system designs, computing power, algorithms, optics, and communications are making machine vision more cost effective than ever before.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Women in engineering; Engineering Leaders Under 40; PID benefits and drawbacks; Ladder logic; Cloud computing
Robotic integration and cloud connections; SCADA and cybersecurity; Motor efficiency standards; Open- and closed-loop control; Augmented reality
Controller programming; Safety networks; Enclosure design; Power quality; Safety integrity levels; Increasing process efficiency
This article collection contains several articles on how advancements in vision system designs, computing power, algorithms, optics, and communications are making machine vision more cost effective than ever before.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me