Electrical power measurement on 3-phase motors

Testing drive-and-motor systems is a three-step process.


Complete testing of a pulse width modulation (PWM)-based drive and motor system is a three-step process. Step 1 is accurate measurement of PWM VFD input and output power to identify drive efficiency and power losses. Step 2 is accurate measurement of motor input power. Step 3 is accurate measurement of motor mechanical power. The optimum method is to integrate all three steps using a single power analyzer to eliminate time skew. This provides excellent efficiency calculations as well, in one software and hardware solution.

In the first part of this three-part series, we examined basic electric motor power measurements and analysis. In the second part, we examined a three-step process for making precision electrical and mechanical power measurements on motors and variable frequency drive (VFD) systems with complex and distorted waveforms, and how these measurements are used to calculate motor and drive system efficiencies. In this third and final article on electric motor power measurement and analysis, we will cover power measurements for 3-phase ac motors and drive systems.

Some power analyzers have a motor option in which the speed and torque signals can be integrated in this manner. These power analyzers can measure electrical power and mechanical power, and send the data to a PC running software from the original analyzer manufacturer, or custom software from a system integrator (see Lead Photo).

Figure 1: This diagram shows a typical motor and drive test system. Courtesy: YokogawaPWM drive measurements for ac motors

When using a PWM VFD to operate a motor, it is often necessary to measure both the input and output of the VFD using a 6-phase power analyzer. Not only can this setup measure the 3-phase power, it can also measure dc or single-phase power (see Figure 1).

Depending on the analyzer, the setup mode will be performed in the normal or RMS mode. The wiring configuration should be set to match the application, such as 3-phase input and 3-phase output.

Figure 2: This screenshot shows a highly distorted PWM output voltage and current waveform with very high harmonic content. Courtesy: YokogawaAny line filter or low-pass filter should be off because the filtering will obscure the measurements. However, the zero-cross filter or frequency filter should be on because it will filter the high-frequency noise so the fundamental frequency can be measured. This measurement is necessary when tracking the frequency of a drive.

Figure 2 shows a PWM output voltage waveform with a highly distorted voltage, chopped high frequencies, and a lot of noise on the current side, making for a difficult measurement. High-frequency switching on the voltage signal creates a much distorted waveform and with high harmonic content. The frequency varies from 0 Hz up to the operating speed.

For such a noisy signal, special current sensors are needed for measurement. Accurate PWM power measurements also require wide bandwidth power analyzers capable of measuring these complex signals.

Figure 3: This screenshot shows voltage and current harmonic content from a PWM measurement. Courtesy: YokogawaFigure 3 is an example of the voltage harmonic content from a PWM output. Beat frequencies are present, and voltage harmonic content exceeds 500 orders (approximately 30 kHz). Most of the harmonic content is in the lower frequencies on the current side. 

PWM motor, drive measurement issues

Inverter voltage is typically measured in one of two ways. A true RMS measurement that includes total harmonic content can be used. However, because the fundamental waveform is primarily what contributes to the torque of the motor, a simpler measurement can be made and used. Most applications only require measurement of the fundamental waveform.

There are two main methods for measuring the fundamental amplitude of the voltage wave. The first and simplest is to use a low-pass filter to remove high frequencies. If the power analyzer has this filter, simply turn it on. Proper filtering will give an RMS voltage of the inverter fundamental frequency. However, this type of filtering does not offer a true total power measurement, so filtering isn't the most exacting method.

The second method is the rectified mean measurement method, which delivers an RMS voltage of the fundamental wave without filtering by using mean-value voltage detection scaled to the RMS voltage. The algorithm of the rectified mean of a cycle average will provide the equivalent of the fundamental voltage that will be very close to the RMS value of the fundamental wave.

Using this method, the total power, total current, and fundamental voltage can be measured.

<< First < Previous 1 2 Next > Last >>

Philip , FL, United States, 10/08/14 11:06 AM:

The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Motor specification guidelines; Understanding multivariable control; Improving a safety instrumented system; 2017 Engineers' Choice Award Winners
Selecting the best controller from several viewpoints; System integrator advice for the IIoT; TSN and real-time Ethernet; Questions to ask when selecting a VFD; Action items for an aging PLC/DCS
Robot advances in connectivity, collaboration, and programming; Advanced process control; Industrial wireless developments; Multiplatform system integration
Motion control advances and solutions can help with machine control, automated control on assembly lines, integration of robotics and automation, and machine safety.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Big Data and bigger solutions; Tablet technologies; SCADA developments
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
click me