Gateways for the Industrial Internet of Things: Emerging trends

Industrial Internet gateways help translate among competing, closed silos of proprietary stacks that provide vertical integration between the things in the field and the integrated cloud services that make them useful.

09/05/2015


Figure 1: The FieldServer BACnet Router from Sierra Monitor Corp. is used by system integrators to interconnect BACnet networks using different media, such as RS485 field networks and IP networks, typically to connect the devices to a building managementRemote connections and new software licensing structures can create opportunities for incremental upgrades in control and automation software, advancing efficiency, improving information flow, and bringing greater optimization. The confluence of ubiquitous, open standard-based Internet connectivity and powerful, low-cost embedded devices has led to the emergence of the Internet of Things (IoT).

A projected 25-billion IoT-connected devices are expected to be online by 2020. This trend disrupts the established control and instrumentation field, opening it up to a new range of possibilities referred to as the Industrial Internet of Things (IIoT).

The development of the Internet itself has been characterized by collaboration, interoperability, and conformance to open standards in contrast to the foundational ethos of the Internet. In a manner foreshadowed by proprietary mobile phone ecosystems, the IoT/IIoT space is emerging as a new "wild west" in which competing, closed silos have emerged. Each silo is vying to lock in a maximal share of the expected huge market by providing a full, closed, proprietary stack providing full vertical integration between the "things" in the field and the integrated cloud services that make them useful.

The IIoT trend toward fragmentation is at odds with the needs of system integrators and manufacturers in control, instrumentation, building management, and energy management fields. Over the past two decades, these fields have been characterized by industrywide collaboration in the creation of open standards that have exposed suppliers to more direct competition, while at the same time expanding their market reach. The result has created significant benefits to the industry as a whole. The convenience, added value, and efficiency of this approach is under threat from the new silos. 

Figure 2: The FieldServer EZ-Gateway from Sierra Monitor Corp. illustrates a standardized approach to field device virtualization. In this example, a system integrator creates a profile that configures data items to be read from a Modbus device and mappedIn reaction to this danger, a number of vendors have formed the Industrial Internet Consortium (IIC) to work toward establishing a consensus around interoperability. To this end, the IIC has published the "Industrial Internet Reference Architecture Technical Report" (IIRA), which sets out an architectural framework intended to guide the development of Industrial Internet Systems (IIS). The IIRA explores architectural concerns from business, usage, functional, and implementation viewpoints.

The implementation viewpoint discusses the technology and communication schemes required by the reference architecture and is of special interest for the topic at hand.

The IIRA outlines a number architecture patterns that largely depend on the presence of gateway devices, such as: 

Three-tier architecture pattern with edge, platform, and enterprise tiers

This pattern uses a gateway to connect the edge tier (containing field devices or edge nodes linked by a proximity network) to the platform tier (containing data transforms, operations, and analytics) via an access network, which provides for data and control flows to be exchanged. Figure 7-2 from the IIRA illustrates this pattern (See example on next page).

Gateway-mediated edge connectivity and management architecture pattern

Figure 3: A portable data format by which device profiles that have been manually configured on a gateway can be exported and shared with users via a profile sharing website hosted by the gateway vendor. A publicly available library of labor-saving profilHere an edge gateway provides the link between a local area network (LAN) of edge devices and a wide area network (WAN) linking to higher level services. The edge gateway may itself act as the provider of local connectivity by acting as a hub. It serves to insulate the edge devices from the WAN and can contain some data processing, analytics, control logic, and application entities.

As the widespread acceptance of modern, open-field protocol standards has reduced the need for traditional gateways in the field, the IIoT has created a need for a new breed of intelligent gateways that unlock the full potential of interoperability among diverse real-world devices and industrial Internet systems.

Data management

Industrial and building automation gateways have moved far beyond the simple message translation paradigm of the classical definition of gateways. Gateways can now occupy all levels of the open systems interconnection (OSI) networking model. By supporting application layer entities, modern gateways can actively read, write, and manipulate data, as well as implement intelligent data caching, data logging, and controller functions. Store-and-forward techniques allow for the maintenance of continuous historical records where Internet connectivity is unreliable or intermittent. 

Virtualization, abstraction

Beyond caching and mirroring data, gateways are becoming important providers of data abstraction. By modeling diverse field devices in consistent, self-documenting, virtual-device models, gateways insulate the higher tiers of the system against the countless different data structures encountered in the field. Similarly, field device functions can be wrapped and presented in a coherent manner. For example, a gateway can render a collection of very diverse energy meters in an abstract representation that is consistent across an IIS, thus, insulating higher tiers of the system from often unavoidable variations in the field. 

Network management

Gateways are often ideally located to host field network management functions, removing the need for third-party network management tools.

Network discovery, self-configuration

Taking the network management concern a step further, IIoT gateways are becoming capable of zero-configuration deployment. Once such a gateway has been installed in a field network, it is able to detect field devices autonomously and consolidate data and functions into an integral interface.

Crowdsourcing

The enormous fragmentation and diversity of the existing, installed base of products can make some degree of human interaction unavoidable. Many legacy field protocols have no means of describing the data they present, forcing vendors to supply separate documentation of the data maps for each device model. These in turn need to be manually translated into gateway configurations for the data to become presentable in a more integral virtual-device model.

In a new development, a gateway vendor has created a portable data format by which device profiles that have been manually configured on a gateway can be exported and shared with the broader user community via a profile sharing website hosted by the gateway vendor. This is giving rise to a growing, publicly available library of labor-saving profiles that are indexed by a field device model and can be uploaded and instantiated on compatible gateways by any system integrator. 

Application hosting

Multi-tier architectures often require a range of functions to be available to local operators even while the site is disconnected from the Internet, or perhaps in instances where a given deployment remains isolated. Additionally, a robust system design might require certain monitoring and control functions to be located locally to maintain uninterrupted operations where Internet connectivity is intermittent. 

Remote access

Gateways are able to host remote access servers, providing secure tunneling access to remote users of applications hosted on the gateway. This minimizes the functionality required of the cloud infrastructure and extends the usability of locally hosted applications. 

Gateway architecture developments

The expanded scope of gateway functionality places enormous demands on the productivity and flexibility of the supporting technologies. Where gateways might traditionally have succeeded as monolithic embedded applications programmed in C or C++, the functional diversity and flexibility required today necessitate platforms that allow the desired combination of services to be assembled from a range of custom, purpose-built components and third-party, proprietary, or open-source components. The growing convergence between traditional server environments and embedded environments is creating important opportunities to expand the capabilities of gateways. 

Portable software platforms

Software portability significantly improves the development speed and cost of connected systems by enabling communications or application code to be reused on multiple platforms. Two factors have emerged that have enabled code sharing between edge and cloud platforms: compatible virtual machines (VMs) and portable operating systems. 

Learn more about trends such as compatible virtual machines, and see a modbus data map and text.


<< First < Previous 1 2 Next > Last >>

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Sensor-to-cloud interoperability; PID and digital control efficiency; Alarm management system design; Automotive industry advances
Make Big Data and Industrial Internet of Things work for you, 2017 Engineers' Choice Finalists, Avoid control design pitfalls, Managing IIoT processes
Engineering Leaders Under 40; System integration improving packaging operation; Process sensing; PID velocity; Cybersecurity and functional safety
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Flexible offshore fire protection; Big Data's impact on operations; Bridging the skills gap; Identifying security risks
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
click me