Open-loop control offers some advantages


A feedback controller can keep an oven's temperature within acceptable ranges, sustain the pressure in a steam supply line as demand fluctuates, and maintain a car's speed through an uphill climb. Every feedback controller has a different strategy for accomplishing its particular mission, but all use some variation on the closed-loop control algorithm--measure a process variable, decide if its value is acceptable, apply a corrective effort as necessary, and repeat the whole operation ad infinitum .

10abas.gif (4248 bytes)

Disabling the feedback path in a closed loop control system generally reduces accuracy but may be necessary to stabilize the loop.

Open loop controllers, on the other hand, do not use feedback. They apply a single corrective effort when so commanded and assume that the desired results will be achieved. An oven may have a separate open-loop controller that opens and closes the oven doors without verification. The steam supply system may have an emergency shutdown controller that automatically cuts power and vents the lines when a dangerous over-pressure condition is detected.

Even feedback controllers must operate in the open-loop mode on occasion. A sensor may fail to generate the feedback signal or an operator may take over the feedback operation to manipulate the controller's output manually.

Operator intervention is generally required when a feedback controller proves unable to maintain stable closed-loop control. For example, a particularly aggressive pressure controller may overcompensate for a drop in line pressure. If the controller then overcompensates for its overcompensation, the pressure may end up lower than before, then higher, then even lower, then even higher, etc. The simplest way to terminate such unstable oscillations is to break the loop and regain control manually.

Expert operators
There are also many applications where experienced operators can make manual corrections faster than a feedback controller can. Using knowledge of the process' past behavior, operators can manipulate process inputs now to achieve the desired output values later. A feedback controller, on the other hand, must wait until the effects of its latest efforts are measurable before it decides on the next appropriate control action. Predictable processes with long time constants or excessive deadtime are particularly suited for open-loop manual control.

The principal drawback of open-loop control is accuracy loss. Without feedback, there is no guarantee that the control inputs applied to the process will actually have the desired effect. If speed and accuracy are both required, open-loop and closed-loop control can be applied simultaneously using a feedforward strategy. A feedforward controller uses a mathematical model of the process to make its initial control moves like an experienced operator would. It then measures the results of its open-loop efforts and makes additional corrections as necessary like a traditional feedback controller.

Feedforward is particularly useful when sensors are available to measure an incoming disturbance before it hits the process. If its future effects on the process can be accurately predicted with the process model, the controller can take preemptive actions to absorb the disturbance as it occurs.

For example, if a car equipped with cruise control and radar could see a hill coming, it could begin to accelerate even before it begins to slow down. The car may not end up at the desired speed as it climbs the hill, but even that error can eventually be eliminated by the cruise controller's normal feedback control algorithm. Without the advance notice provided by the radar, the cruise controller wouldn't know that acceleration is required until the car had already slowed below the desired speed halfway up the hill.

Consulting Editor, Vance J. VanDoren, Ph.D., P.E., is president of VanDoren Industries, West Lafayette, Ind.

No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Motor specification guidelines; Understanding multivariable control; Improving a safety instrumented system; 2017 Engineers' Choice Award Winners
Selecting the best controller from several viewpoints; System integrator advice for the IIoT; TSN and real-time Ethernet; Questions to ask when selecting a VFD; Action items for an aging PLC/DCS
Robot advances in connectivity, collaboration, and programming; Advanced process control; Industrial wireless developments; Multiplatform system integration
Motion control advances and solutions can help with machine control, automated control on assembly lines, integration of robotics and automation, and machine safety.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Big Data and bigger solutions; Tablet technologies; SCADA developments
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
click me