Researchers at Bar-Ilan University showed long sequences with certified randomness are far from being truly random, which may lead to a new type of classified secure communication between two parties where even the existence of the communication itself is concealed.

Generating true random bit sequences, classical or quantum, is an impossible mission for secure communication, but there is now a new method that may seem simple, but is much more complicated.
The mathematical definition of a random bit sequence is so simple that it can be summarized in one sentence: A sequence of bits whose next bit is equal to 0 or 1 with equal probability, independent of previous ones. Although the definition is very simple, the practical certification of a process as random is much more complicated but crucial, for example, in secure communication, where information must be scrambled in order to prevent hackers from predicting a bit stream.
Along those lines, researchers at Bar-Ilan University showed long sequences with certified randomness by the National Institute of Standard and Technology (NIST) are far from being truly random.Their work shows a large fraction of non-random bits can be systematically embedded in such bit sequences without negatively affecting their certified randomness. This discovery leads to a new type of classified secure communication between two parties where even the existence of the communication itself is concealed.
“The current scientific and technological viewpoint is that only non-deterministic physical processes can generate truly random bit sequences, which are conclusively verified by hundreds of very comprehensive statistical tests,” said Prof. Ido Kanter, of Bar-Ilan University’s Department of Physics and Gonda (Goldschmied) Multidisciplinary Brain Research Center. Kanter’s research group includes Shira Sardi, Herut Uzan, Shiri Otmazgin, Dr. Yaara Aviad and Prof. Michael Rosenbluh.
“We propose a reverse strategy, which has never been tested before. Our strategy aims to quantify the maximal amount of information that can be systematically embedded in a certified random bit sequence, without harming its certification,” said PhD students Shira Sardi and Herut Uzan, key contributors to the research.
Using such a strategy, the level of randomness can be quantified beyond the binary certification. In addition, since the information is systematically embedded in the bit sequence, the approach offers a new cryptosystem, similar to steganography, where the existence of any communication is completely concealed.
“According to the fundamental principles of quantum physics, the randomness of quantum random bit generators is expected to be perfect. In practice, however, this perfect quantum randomness may be diminished by many experimental imperfections,” Kanter said. “Hence, a sequence generated by a quantum number generator ultimately has to be certified by statistical tests which can differentiate between original quantum guaranteed sequences and spurious ones. However, the newly-discovered incompleteness of practical randomness is expected to disrupt even quantum random number generators.”
The new viewpoint presented in this work calls for a reevaluation of the quantified definition of measuring classical and quantum randomness, as well as its application to secure communication.
This content originally appeared on ISSSource.com. ISSSource is a CFE Media content partner. Edited by Chris Vavra, associate editor, CFE Media, [email protected].