10 steps to a smoother automation system upgrade

08/27/2013


Critical documentation

The new automation installation with all its interfaces and connections to field equipment and wiring, network infrastructure, and ancillary systems, will require many changes to documents and drawings.

Certain critical documentation must be reviewed and often updated in order to operate and maintain the new automation system successfully. Some of the most important documents that must be examined include P&IDs, loop sheets, I/O databases, system configuration, software programs, software documentation, batch requirements, functional specifications, control system narratives, and programming and design standards. 

Demolition, installation, and commissioning

A thorough FEL evaluation will examine the required demolition, installation, and commissioning services to make sure these activities are properly accounted for in terms of budget, schedule, and available manpower. Manufacturing facilities are typically staffed to handle day-to-day operations, and don’t have personnel available to execute major projects. Therefore, the FEL evaluation should identify the required personnel, and make provisions for contracting for additional forces. 

The commissioning plan is a critical component of any automation system upgrade. Major items that must be taken into account typically include shutdown schedules, plans to minimize downtime, and use of hot cutovers. As with other activities related to installation and commissioning, supplemental manpower will probably be required. Provision must also be made to account for plant output typically lost during installation and commissioning.

Construction design activities associated with installation and commissioning should also be estimated and planned in the FEL evaluation so that they can be properly executed. Some of the key activities that may need to be performed included the development of new cable and conduit schedules, instrumentation and field devices drawings and diagrams, panel and enclosure designs, loop sheets, motor elementary diagrams, point-to-point diagrams, and installation details drawings. 

Compliance and abnormal situation management

The changes made to accommodate the automation system upgrade will require examination to ensure compliance with all standards, codes, and operating procedures.

Safety instrumented systems (SIS) must be checked to ensure that all required SIL levels are maintained. A layer of protection analysis (LOPA) may need to be performed, and environmental health and safety procedures must be maintained at acceptable levels.

Compliance with current codes and standards such as NEC, NFPA, and FDA regulations must be maintained, often with permits and inspections in the case of NEC and NFPA regulations. Likewise, FDA regulations for validated systems contain a very strict protocol that must be followed for all changes at facilities that manufacture pharmaceutical products. Many food and beverage plants must also comply with FDA regulations when performing changes and upgrades, albeit at a less stringent level.

Your older automation system will have had some informal or formal methods for dealing with abnormal situations. Similarly, the new automation system must also have a method to handle abnormal situations. This is an area that can often be improved upon by simply taking advantage of features built into the automation system, as well by implementing current abnormal situation management (ASM) graphics and alarm management standards and best practices.

In fact, the FEL evaluation should examine all possible areas of improvement, including ASM, as this will ensure the maximum return on investment for the new automation system. 

Areas for improvement

The new automation system will typically have features and functions not available with the older DCS or PLC-based system, allowing for improvements to existing operations. Further improvements can result from modifying existing operations and practices, with the automation system upgrade providing an ideal time to perform these activities.

A leading area for improvement is automating processes and systems that were run in manual mode with the old automation system. If manual operation was required because the plant had insufficient components and equipment, then these items will require upgrades or replacements. For example, an on-off valve may need to be modified or replaced so that it can operate as a control valve to automate a particular control loop.

In other cases, the new automation system may allow automation of areas that simply couldn’t be automatically controlled by the older system. Newer automation systems often have advanced process control features built-in, allowing difficult loops to be controlled automatically. Automating manual processes will produce an immediate and substantial return on investment by reducing required operator involvement and consequent human error, by avoiding shutdowns, by improving yields, and by increasing throughput.

Many older automation systems present data and diagrams to plant operators through antiquated graphics displays with low resolution, poor screen quality, and insufficient screen size. By contrast, newer automation systems can take advantage of the tremendous increases made over the past few decades in terms of improved operator interface hardware and software to reduce operator fatigue, facilitate training of new operators, and improve abnormal situation management.

An automation system upgrade can replace an obsolete system with one that can be supported and maintained more easily, but it is also an ideal time to make major advances in operations. Simply replacing like-for-like is a huge lost opportunity. In order to take full advantage of an upgrade and minimize risk, a thorough FEL evaluation must be performed to examine all areas that will be affected by the upgrade, including those outside of the HMI, controller, and I/O.

Matt Sigmon is director of DCS Next at MAVERICK Technologies. 

Key concepts:

  • Process control system migration and upgrade projects often require more analysis than most companies realize.
  • A systematic approach to analyzing the project early can help avoid problems and identify opportunities for improving performance.

 

ONLINE

www.mavtechglobal.com

Read the Real World Engineering blog at www.controleng.com/blogs


<< First < Previous Page 1 Page 2 Page 3 Next > Last >>

The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by Control Engineering subscribers. Vote now (if qualified)!
The System Integrator Giants program lists the top 100 system integrators among companies listed in CFE Media's Global System Integrator Database.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
This eGuide illustrates solutions, applications and benefits of machine vision systems.
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
HMI effectiveness; Distributed I/O; Engineers' Choice Award finalists; System Integrator advice; Inside Machines
Women in engineering; Engineering Leaders Under 40; PID benefits and drawbacks; Ladder logic; Cloud computing
Robotic integration and cloud connections; SCADA and cybersecurity; Motor efficiency standards; Open- and closed-loop control; Augmented reality
Programmable logic controllers (PLCs) represent the logic (decision) part of the control loop of sense, decide, and actuate. As we know, PLCs aren’t the only option for making decisions in a control loop, but they are likely why you’re here.
This digital report explains how motion control advances and solutions can help with machine control, automated control on assembly lines, integration of robotics and automation, and machine safety.
This article collection contains several articles on how advancements in vision system designs, computing power, algorithms, optics, and communications are making machine vision more cost effective than ever before.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
Cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Jose S. Vasquez, Jr.
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me