Selecting pressure transducers

11/01/1999



P
ressure transducers are found in numerous OEM applications including appliances, on- and off-road vehicles, medical equipment, industrial machinery and military/aerospace applications. They are also used widely in process control. Introduction of the microprocessor has spurred both functionality and expansion in the use of pressure transducers over the past 15 years. Selecting the proper one for any application requires a close look at the following criteria:

Need for isolation -One of the first questions to be asked is whether the transducer's sensor needs to be isolated from the medium being measured. If the medium is a clean and a noncorrosive gas or liquid then a nonisolated transducer is acceptable. For corrosive, high-temperature, or viscous media, isolation is generally required. Frequently, a metal or ceramic diaphragm with or without a fill fluid is incorporated. Diaphragm seals can be attached to most pressure transducers.

Accuracy -This key selection criterion is determined by the performance level required for the application. Pressure instrumentation is available in a wide range of accuracies. Keep in mind, high accuracy devices usually have improved performance both with temperature changes and over time. This greater stability comes at a premium price.

Pressure range -Commonly available ranges exist from vacuum to 60,000 psi-in steps-with vacuum, gauge, absolute, or differential pressure references. When selecting a transducer's range, it is desirable for the application's normal operating pressure to be 50-90% of the range chosen.

Temperature effects -Temperature changes have the greatest effect on a pressure transducer's environmental performance. Most manufacturers provide temperature compensation specifications that define thermal effects over a given range. Performance shown as a coefficient or error band is guaranteed over that temperature range. Outside of that range, larger errors should be anticipated.

Vibration/shock effects -Vibration and shock are highly application-specific environmental issues. They should reviewed for fit with manufacturer's specifications.

Electrical effects -Built-in radio frequency interference (RFI), electromagnetic interference (EMI), and electrostatic discharge (ESD) protection are fast becoming a requirement for usage within today's operating environments. "CE"- marked products usually have RFI, EMI and ESD protection built into the transducer's electronics.

Hazardous area applications -Transducers to be used in a hazardous environment must be approved explosion-proof or intrinsically safe models.

Type of process connection -Pressure ports of 1/8-, 1/4-, 1/2-in. NPT and 7/16-in. straight threads are common in industrial applications. Applications in low-pressure ranges may only require hose barbs or simple push-on connections. User preference is typically dependent upon the industry and application.

Hydraulic Applications -When applying transducers in hydraulic systems, it may be necessary to consider use of "snubbers" to dampen hydraulic spikes. These dampening devices prevent sensor failure due to over range readings from phenomena such as "water hammer."

Outputs -Transducer outputs are available in industry-standard, millivolt, voltage, or current signals. Digital outputs with communication capability are available as well. Some of the more common outputs are 0-30 mV, 0-100 mV, 4-20 mA, 0-5 V dc and 0-10 V dc. The 4-20 mA output is the simplest since it is usually a two-wire configuration. Other nonstandard outputs are usually the result of specific requirements of a large-volume OEM.

Electrical connections -Electrical terminations possible include conduit, cable, circular, and DIN style. DIN-style connectors, both full size and miniature, have become popular options across the application spectrum because they offer the convenience of screw terminals and moderate cost.

Bob Torsiello holds a masters degree in electrical engineering from
Stevens Institute of Technology, Hoboken, N.J., and is product manager
for transducer products at NOSHOK Inc. He is a 28-year veteran of the
instrumentation field, serving the last 10 years specifically in the
pressure transducer area.

Comments? E-mail djohnson@cahners.com.





No comments
The Engineers' Choice Awards highlight some of the best new control, instrumentation and automation products as chosen by...
Each year, a panel of Control Engineering editors and industry expert judges select the System Integrator of the Year Award winners.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Learn how to increase device reliability in harsh environments and decrease unplanned system downtime.
This eGuide contains a series of articles and videos that considers theoretical and practical; immediate needs and a look into the future.
Learn how to create value with re-use; gain productivity with lean automation and connectivity, and optimize panel design and construction.
Go deep: Automation tackles offshore oil challenges; Ethernet advice; Wireless robotics; Product exclusives; Digital edition exclusives
Lost in the gray scale? How to get effective HMIs; Best practices: Integrate old and new wireless systems; Smart software, networks; Service provider certifications
Fixing PID: Part 2: Tweaking controller strategy; Machine safety networks; Salary survey and career advice; Smart I/O architecture; Product exclusives
The Ask Control Engineering blog covers all aspects of automation, including motors, drives, sensors, motion control, machine control, and embedded systems.
Look at the basics of industrial wireless technologies, wireless concepts, wireless standards, and wireless best practices with Daniel E. Capano of Diversified Technical Services Inc.
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
This is a blog from the trenches – written by engineers who are implementing and upgrading control systems every day across every industry.
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.

Find and connect with the most suitable service provider for your unique application. Start searching the Global System Integrator Database Now!

Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Control Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.